Polynomial time refers to a class of computational problems that can be solved by an algorithm in a time that is a polynomial function of the size of the input. This means that if the input size is denoted as n, the time taken to solve the problem can be expressed as a function like n², n³, or any other polynomial expression. Problems that can be solved in polynomial time are generally considered efficient and feasible for computation.
In computer science, problems that require more than polynomial time, such as exponential time, are often deemed intractable for large inputs. The distinction between polynomial time and other complexities is crucial in the study of computational complexity theory, as it helps categorize problems into those that can be solved efficiently and those that cannot.